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Acetylenic sulfones attached to solid supports by means of ester

linkers were employed in a variety of cyclization and

cycloaddition reactions, followed by cleavage of the products

from the resin by ester hydrolysis or reductive desulfonylation.

The electron-withdrawing sulfone moiety1 activates adjacent

double and triple bonds2 toward conjugate additions, and

stabilizes the corresponding a-anions, which can then react with

various electrophiles. Thus, when conjugate addition and intra-

molecular a-alkylation3 or acylation4 are employed in tandem, a

sulfone-mediated cyclization protocol ensues. This approach has

been employed in the synthesis of several alkaloids and related

species.5 Vinyl and acetylenic sulfones also undergo a variety of

Diels–Alder and 1,3-dipolar cycloadditions.1,2 Finally, the sulfone

moiety can either be retained in the cyclized product, where it

serves as a useful functional group for further transformations, or

it can be cleaved by appropriate reductive desulfonylation

methods.6 These processes are illustrated in Scheme 1, where the

unsaturated sulfone functions as the synthetic equivalent of

hypothetical alkane and alkene dipole species.

The immobilization of reagents and starting materials on solid

supports has become increasingly popular in organic synthesis.7

Advantages typically include simplified work-ups, cleaner reactions

and the possibility of conducting sequential transformations

without the need to purify products at each stage. The preparation

of libraries of biologically, or otherwise interesting compounds can

be facilitated by conducting various combinations of reactions on

solid-supported starting materials. To date, for example, b-ben-

zoyloxyalkyl and c-hydroxyalkyl sulfones anchored to solid

supports have been employed in Julia–Lythgoe olefinations8a

and in the preparation of trisubstituted 2-pyridones,8b while

supported vinyl sulfones have been converted into libraries of

tetrahydro-b-carbolines9a or tertiary amines,9b and into peptides

used as probes of cysteine proteases.10 We now report the

preparation of the first acetylenic sulfones attached to solid

supports, along with several types of subsequent transformation

that illustrate their potential synthetic utility.

Acetylenic sulfones can be easily prepared by the free radical

selenosulfonation of acetylenes, followed by selenoxide syn-

elimination (Scheme 2),11 as well as by other methods.2a

Our first approach to attaching an acetylenic sulfone to a

polymer support is shown in Scheme 3. The commercially

available [4-(hydrazinosulfonyl)phenyl]propionyl resin 1

(Novabiochem Inc.) was converted to selenosulfonate 2,12 followed

by free radical addition to 1-hexyne. Diphenyl diselenide was

added to the mixture to facilitate the chain transfer step of the

phenylseleno group to the intermediate b-sulfonylvinyl radical,

thereby affording 3. Selenoxide elimination then produced the

desired acetylenic sulfone 4, confirmed by a strong IR absorption

at 2194 cm21.13 Unfortunately, several efforts to perform

cyclizations with 4 provided low yields of relatively impure

products when attempts were made to cleave the latter from the

support by reductive desulfonylation.

An alternative method was therefore developed, in which a

series of acetylenic sulfones were attached to the solid support

via an ester linker. Thus, the selenosulfonation of three

representative acetylenes with 6, which was in turn prepared from

sulfonhydrazide 5, afforded adducts 7a–7c. Esterification of resin
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Scheme 1 Reactions of unsaturated sulfones.

Scheme 2 Preparation of acetylenic sulfones by selenosulfonation.
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814 with 7a–7c produced the desired products 9a–9c, respectively.

Desilylation of 9c afforded the corresponding terminal acetylene

9d (Scheme 4).13

A third approach consisted of introducing the selenosulfonate

moiety to the resin via the sulfonhydrazide 10,13 as shown in

Scheme 5, followed by addition to the appropriate acetylene and

selenoxide elimination. This method has the advantage that

a single polymer-supported selenosulfonate can be used to

generate an array of supported acetylenic sulfones 9, making it

more attractive for the eventual production of libraries of

cyclization products when used in conjunction with subsequent

transformations (vide infra).

Resins 9a, 9b and 9d were then subjected to a variety of

illustrative cyclization and cycloaddition reactions with chloro-

amines 1115 and 12,16 cyclopentadiene (13) and nitrile N-oxide

14.17 The results are summarized in Scheme 6.

Cyclization via conjugate addition of chloroamines 11 and 12,

followed by base-mediated intramolecular alkylation and cleavage

from the resin with lithium hydroxide afforded 15 and 17,

respectively. The Diels–Alder reactions of the supported acetylenic

sulfones with 13 and their dipolar cycloadditions with 14 were also

successful, affording cycloadducts 19 and 21, respectively, after

similar cleavage from the support. Alternatively, enamine reduc-

tion with sodium cyanoborohydride, followed by reductive

cleavage from the support with 5% sodium amalgam, afforded

the corresponding desulfonylated products 16 and 18. Similarly,

reductive desulfonylation of the cycloadduct obtained from 13 and

9b afforded 20b, while that of the cycloadduct derived from nitrile

oxide 14 and 9b was accompanied by N–O cleavage to provide

Scheme 3 Conversion of a sulfonhydrazide to an acetylenic sulfone on a

solid support.

Scheme 4 Preparation of acetylenic sulfones on solid supports using an

ester linker.

Scheme 5 Preparation of ester-linked acetylenic sulfones on solid

supports from a sulfonhydrazide.
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22b. Products 21 and 22 were obtained as single regioisomers. The

purities of the isolated products were typically >90%, and in many

cases >95% (NMR analysis), without further purification. The

exceptions were 15d, 17d and 22b, where the purities of the crude

products were ,90%, and the corresponding yields are reported

for products isolated by flash chromatography.

In conclusion, we have demonstrated that acetylenic sulfones

can be anchored either directly, or via an ester linker, to

appropriate solid supports. The latter species then undergo a

variety of useful cyclization or cycloaddition reactions, and the

resulting products can be isolated by cleavage from the resin via

ester hydrolysis or reduction with sodium amalgam to afford the

corresponding sulfone-functionalized or desulfonylated products,

respectively.
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